Solutions for a nonlinear fractional boundary value problem with sign-changing Greens function

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solutions for a nonlinear fractional boundary value problem with sign-changing Green’s function

This paper considers the existence, uniqueness and non-existence of solution for a quasi-linear fractional boundary value problems with sign-changing Green’s function. Under certain growth conditions on the nonlinear term, we employ the Leray-Schauder alternative fixed point theorem to obtain an existence result of nontrivial solution and use the Banach contraction mapping principle to obtain a...

متن کامل

Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation

This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.

متن کامل

Positive Solutions for a Fractional Boundary Value Problem with Changing Sign Nonlinearity

and Applied Analysis 3 A2 there exist g x , h x , and k t 0, such that 0 ≤ f t, x ≤ k t g x h x , ∀x ∈ 0,∞ , a.e. t ∈ 0, 1 , 1.6 here g : 0,∞ → 0,∞ is continuous and nonincreasing, h : 0,∞ → 0,∞ is continuous, and h/g is nondecreasing; A3 There exist two positive constants R > r > 0 such that R > ΦR1 γ∗ ≥ r > 0, ∫1 0 k s g ( rsα−1 ) ds < ∞, R ≥ ( 1 h R g R )∫1 0 1 − s α−β−1 Γ α ( 1 − aξα−β−1 s ...

متن کامل

Existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations

This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Sciences and Applications

سال: 2015

ISSN: 2008-1901

DOI: 10.22436/jnsa.008.05.17